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A new technique of free-space simulation has been developed for 
solving unbounded electromagnetic problems with the finite-difference 
time-domain method. Referred to as PML, the new technique is based 
on the use of an absorbing layer especially designed to absorb without 
reflection the electromagnetic waves. The first part of the paper 
presents the theory of the PML technique. The second part is devoted 
to numerical experiments and to numerical comparisons with the 
previously used techniques of free-space simulation. These comparisons 
show that the PML technique works better than the others in all cases; 
using it allows us to obtain a higher accuracy in some problems and a 
release of computational requirements in some others. © 1994Academic 
Press, Inc. 

1. I N T R O D U C T I O N  

Since the initial work of K. S. Yee [1],  the finite- 
difference time-domain technique has been widely used in 
electromagnetic computations. One of the inconveniences of 
this technique lies in the fact that the Maxwell equations 
havd to be solved in a discretized domain whose sizes need 
to be restrained. Nevertheless, open problems involving 
theoretically boundless space extension can be solved when 
applying special conditions on the boundaries of the 
computational domain, in order to absorb the outgoing 
waves. Such a need of free-space simulation happens in many 
problems and especially in wave-structure interactions. 

To absorb the outgoing waves, various techniques 
have been used in computer codes. The first one was the 
"radiating boundary" [-2, 3 ] which seems to be left unused 
now. Another one was the matched layer [-4-6] which 
consisted of surrounding the computational domain with an 
absorbing medium whose impedance matches that of free- 
space. A third technique appeared with the one-way 
approximation of the wave equation initially exhibited for 
acoustic waves by Engquist and Majda [7].  Then applied 
in the electromagnetic field [8]  this technique has been the 
purpose of many works [9, 10] and seems to be the most 
used today. However, none of the free-space simulation 
techniques is faultless; a wave is absorbed without reflection 
in particular cases only, for instance, if it is plane 
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and propagates perpendicularly to the boundary. These 
imperfections forbid treatment of some problems and 
impose constraints on others, as the well-known need of 
setting boundaries sufficiently far from the scatterer when 
solving interaction problems. 

In this paper, we describe a new technique of free-space 
simulation. As in [4-6]  this technique is based on the use of 
an absorbing layer, but the matched medium of [4-6]  is 
now replaced by a new matched medium that we have 
especially designed to absorb without reflection the elec- 
tromagnetic waves. With the new medium the theoretical 
reflection factor of a plane wave striking a vacuum-layer 
interface is null at any frequency and at any incidence angle, 
contrary to the [4-6]  medium with which such a factor is 
null at normal incidence only. So, the layer surrounding the 
computational domain can theoretically absorb without 
reflection any kind of wave travelling towards boundaries, 
and it can be regarded as a perfectly matched layer. Further, 
we will refer to the'new medium as the PML medium and 
to the new technique of free-space simulation as the PML 
technique. 

The first part of the paper describes the P ML technique 
for two-dimensional problems. The P ML medium is 
defined, its theoretical reflectionless properties at a vacuum- 
layer interface are proved, and then the implementation of 
the PML technique in a finite-difference computational 
domain is adressed. The second part of the paper is devoted 
to numerical experiments in order to evaluate how the 
theoretical properties of the PML technique are preserved 
in practical computations. Various numerical tests are 
adressed: reflection of a plane wave at a vacuum-layer inter- 
face, absorption of a pulse on boundaries of a computa- 
tional domain, wave-structure interaction problems, and 
radiation of a slot in free-space. In each case, the results 
computed with the PML technique are compared to those 
computed using the matched layer [4-6]  and the one-way 
wave equation both in its initial form [7, 8] and in the 
Higdon operator form [9].  These comparisons show that 
the PML technique brings a real enhancement of computed 
results in all cases. 
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2. THEORY OF THE PERFECTLY MATCHED LAYER 

2.1. Definition of  the P M L  Medium 

In this paper, we will set the equations of a PML medium 
for two-dimensional problems, first in the TE (transverse 
electric) case. In Cartesian coordinates let us consider a 
problem that is without variation along z, with the electric 
field lying in the (x, y) plane (Fig. 1). The electromagnetic 
field involves three components only, Ex, E~, H~, and the 
Maxwell equations reduce to a set of three equations. In the 
most general case, which is a medium with an electric 
conductivity a and a magnetic conductivity a*, these 
equations can be written as 

~E~ c~H= (1.a) 
~o - - ~  + aEx = ~y 

OH. OE"+aEv= " (1.b) 
to Ot " 8x 

~H: ~E~ ~Ey (1.c) 
P o ~ + a * H z =  ~y - ~x" 

Moreover, if the condition 

o" o *  
- = - -  ( 2 )  

eo /-to 

is satisfied, then the impedance of the medium (1) equals 
that of vacuum and no reflection occurs when a plane wave 
propagates normally across a vacuum-medium interface. 
Such a medium is used in the [4-6]  technique in order to 
absorb the outgoing waves. 

We will now define the PML medium in the TE case. The 
cornerstone of this definition is the break of the magnetic 
component H~ into two subcomponents which we will 
denote as H ~  and H z y .  In the TE case, a PML medium is 
defined as a medium in which the electromagnetic field has 

four components, Ex, E y ,  H:x, H~., connected through the 
four following equations: 

3Ex + O(H~x + H:y) (3.a) 
~o ~ t  r I y E x -  ~y 

8E~, + c~(H~x + H~y) (3.b) 
e° ~t a x E y = -  ~x 

~H-x ~E~ 
- 

8H:v t3E:, 
~o -b-7- + ~TH~'~ = ~ y '  

(3.c) 

(3.d) 

where the parameters (ax, a*, G,, a*) are homogeneous to 
electric and magnetic conductivities. 

A first remark can be made when looking at system (3). 
- * then the last two equations can merge and If a* - try, 

(3) reduces to a set of three equations involving three 
components E~, Ey, and H: = Hzx + H z y .  As a result, the 
PML medium holds as particular cases all the usual media. 

- * -  * =0,  (3) reduces to the Maxwell equa- If ax = ay - ax - ¢7y 

• = 0, it reduces to the tions of vacuum, if gx = a v and a* = ay 
equations of a conductive medium, and, finally, if ax = ~ry 
and a* = or*, it reduces to the equations of the absorbing 
medium (1). 

A second remark can be made before any calculation. If 
• = 0, the PML medium can absorb a plane wave O'y : O'y 

(Ey, Hzx) propagating along x, but it does not absorb a 
wave (Ex, H~y) propagating along y, since in the first case 
propagation is ruled by (3.b) and (3.c), and in the second 
case by (3.a) and (3.d), and vice versa for waves (E~., H:x) 
and (E~, H z y  ) if a~ = a* = 0. Such properties of the par- 
ticular P ML media (a x, a*, 0, 0) and (0, 0, ay, G*) are in 
close relationship with another one; we will prove later: if 
their conductivities satisfy (2), then at vacuum-medium 
interfaces normal respectively to x and y these two media do 
not activate any reflection of electromagnetic waves. Such 
PML media will be the basis of the PML technique. 

E Y 

' ' Ely K 

FIG. 1. The transverse electric problem. 

2.2. Propagation of  a Plane Wave in a P M L  Medium 

Let us consider a wave whose electric field of magnitude 
E0 forms an angle ¢p with the y axis (Fig. 1). We will 
denote as H~xo and Hzy o the magnitudes of the magnetic 
components Hzx and H~;. If a plane wave propagates in the 
PML medium, then the four components of the field can be 
expressed as 

Ex = - E o  sin ~o e iw(t - ~x t~y) 

Ey = E o cos ~p e i°~(t ~ x -  fly) 

n z x  = n z x  o eit°( t - oo: - fly) 

H z y  = n z y  ° 8im(t oex--fly), 

(4.a) 

(4.b) 

(4.c) 

(4.d) 
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where ~o is the pulsation of the wave, t is the time, and ~ and 
/3 are complex constants. Since the magnitude Eo is given, 
the set of Eq. (4) involves four unknown quantities to be 
determined, c~, /3, H=~o, H.-yO. Enforcing E~, Ey, H=~, H .... 
from (4) in the PML equations (3) yields the following set 
of equations connecting the four unknowns: 

toE0 sin ~p - i ay Eo sin ~o = f l(H:,o + H:yo) (5.a) 
60 

1 - i(ax/eO~O ) 
w~ - (10.a) 

1 --  i (a* /#oO9  ) 

1 - i(ay/eOC9 ) (10.b) 
Wy = 1 - i(G*/#oeO )" 

Denoting as ~ any component of the field, ~o its 
magnitude, and c the speed of light, with (4) and (8), we can 
write 

eoEo cos q~ - i a ~  Eo cos ~p = a ( H : x o  + H:yo) 
(O 

(5.b) 

#oH:xo - i a-C H=~o = ctEo cos q~ (5.c) 
O) 

#oH=yo - i a,* H:yo = flEo sin ~p. (5.d) 
O9 

Obtaining H_-~o and Hzy o from (5.c) and (5.d) and bringing 
them respectively into (5.a) and (5.b) yields 

sin 

~ cos q~ 
=fl  ( l _ i ( a , / # o O g ) )  

% o(1 i - cos ~o 
£ 0  

( ~ cos ~p 
=ct 1 --i(a*/#oOg)) 

fl sin ¢p 1 (6.a) 
+ (1 - i ( a * / # o ~ O ) ) J  

~-sins l (6.b) 
+ (1 -- i (a*/#om))]"  

This system of two equations connects the unknowns ~ and 
ft. It may be solved by means of writing the ratio (6.a) over 
(6.b), 

_fl_ = sin ~p 1 - i(av/eoCO ) ( 7 )  

cos ~o 1 - i(ax/eoOg) 

~ =  ~ 0 e ico( t -- ( x Cos ~o + y sin ~p )/cG ) e - ( a '  cos ,/eo c G ) x  e - ( a '  sin tp/eo cG ) y. 

(11) 

The last two unknowns H~xo and Hzy o c a n  be found as 
functions of a and fl from (5.c) and (5.d), and then enforcing 
the ~ and fl values (8) yields 

H z x o = E o ~ l w : , c o s 2 c p  (12.a) 

H ~ y o = E o ~  l w y s i n 2  ~p. (12.b) 

Taking into account (9), the summation of Hzxo and Hzy o is 
then 

H o = E o ~ G  (13) 

and the ratio Z of the electric magnitude over the magnetic 
one is 

1 
Z = ~ ~ .  (14) 

For formulas (11) and (14), an important occurrence is 
when both (ax, a*) and (ay, a~*) satisfy the condition (2). 
Then, the quantities w:,, wy, G, equal unity at any 
frequency, and so the expression of the wave components 
(11) and of the impedance (14) become respectively 

and then obtaining ~2 from (7) and (6.b) and f12 from,(7) 
and (6.a). That yields two sets of (a, fl) of opposite signs for 
two opposite directions of propagation. Choosing the 
positive sign we have 

= cos ~p (8.a) 
G eo 

,8b,  

where 

G = x/wx cos 2 ~0 + wy sin 2 ~0 (9) 

l = ~ ] o e i ~ O ( t  (xcoscp+ ysin~o)/c) 

x e ("~c°s*/~°")Xe (a~sino/eOc)y (15) 

Z = x/#o/eo. (16) 

The first exponential of (15) shows that the wave phase 
propagates normally to the electric field (that means u = ~o 
on Fig. 1 ) with the speed of light c. The last two exponen- 
tials rule the magnitude of the wave which decreases 
exponentially along x and y. Formula (16) shows that the 
impedance of the medium equals that of vacuum. The 
matching impedance condition (2) of the medium (1) is a 
matching condition for the PML media too. Differences lie 
only in the fact that in the case of PML media, two couples 
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of conductivities must satisfy (2), both (ax, a*) and 
(~v, ~*). 

Other remarks can be done when looking at (11) or (15). 
In the general case (11 ), if a wave propagates along y, that 
is, cos q~ = 0, and if, moreover, a . v - ay  - 0 ,  then it is not 
absorbed. That is in accordance with the second remark 
achieved after the PML equations (3). In the case of 

* =  0 the last exponential of matched media (15), if ay = a v 
(15) equals unity and the absorption is a function of the x 
coordinate only. 

2.3. Transmission of a Wave through P M L - P M L  Interfaces 

In this section, we will address the problem of a plane 
wave moving from a PML medium to another one. We will 
prove that in particular cases, with adequate sets of 
parameters ax, a*, a.v, a.*, the transmission is perfect and 
reflectionless at any frequency and at any incidence angle. 
These particular cases will be the basis of the perfectly 
matched layer. 

Interface Normal to x 

We first consider the case of two PML media separated 
by an interface normal to the x axis (Fig. 2). Let us denote 
01 and 02 the angles of the incident and transmitted electric 
fields E~ and E,, with respect to the interface plane. As noted 
after (15) in the previous section, if the media are matched 
ones 01 and 02 are also the angles that the phase propaga- 
tion forms with the normal to the interface. Figure 2 is 
drawn with that assumption. As the q9 angle of a PML 
medium was defined with respect to the y axis (Fig. 1), in 
the case of Fig. 2 we have 0 = ~0 in each media• Let us now 
assume the interface to be infinite and the incident wave to 

Interface 

* 
PML ( (~x2, Ox2 , Oy2, (:K~2) 

H r  

Ei 81 

x = 0 

02 

A Yl 
~> 
x 

FIG. 2. Interface lying between two PML media. 

be plane. First, both the reflected and transmitted waves 
must be plane too. Second, the ratios of these waves over the 
incident one must be without variation when moving on the 
interface. So, for any component ~u of the incident and 
transmitted fields, and for two points A and B of the 
interface, we can write 

~,(B) O,(A) 
0~(B) 0~(A)" (17) 

Denoting as d the distance from A to B, and G1, G2 as the 
quantities (9) of each media, with (11) we have 

@ i ( B ) = O i ( A ) e  i(o(dsinOl/cGl) (allsinOl/e°cGt)d (18.a) 

Or(B) = Ot(A) e i°)(dsinO2/cG2)--(ar2sinO2/e°cG2)d (18.b) 

Since (17) is true for any distance d, the exponential factors 
of (18.a) and (18.b) must be equal. So the relation 

( l _ i a y l ] S i n O ]  ( ay2]  sin 02 
e o ~ O / ~ - / =  l - i e o C O / - - , G 2  (19.a) 

must be satisfied, where 

Gk = x/w~, cos 2 Ok + wyk sin 2 Ok (for k = 1, 2). (19.b)  

This relation, which connects the incident and transmitted 
angles, is the Snell Descartes law at an interface normal to 
x, lying between two P ML (a x, a*, a v, a*) media. The 
demonstration related to the transmitted wave could be 
reproduced for the reflected one, with the conclusion that 
the reflected angle equals ~ - 0~. 

Let us now consider the incident, reflected, and trans- 
mitted electric and magnetic fields E~, Er, E,, H~, Hr, H, 
(Fig. 2). First, continuity of the fields E~. and H:x + H~. lying 
in the interface yields the following set of equations: 

Ei cos 01 - Er cos 01 = E, cos 02 (20.a) 

H i + Hr = H,. (20. b ) 

Second, denoting as Eio, Ero, E,o, the magnitudes of Ei, Er, 
E,, and setting x = 0 in the interface, with (11 ) and (14) we 
can write 

Ei= Eio e i~o(ysinOl/cGl)(1 i(a) l/eOeO)) eie,t (21.a) 

Er= Eroe -~('~l.vsin°~/c~)ll i(~l/~°~ll e~' (21.b) 

E,= Eto e-i'J('vsin°2/cGz)I1 il~2/'°~)) e~' (21.c) 

Hi=El~Z1, Hr= Er/Zl,  H,= E,/Z2. 
(21.d), (21.e), (21.f) 

As a consequence of the Snell Descartes law (19), the three 
exponentials on space of (21.a), (21.b), (21.c) are equal. So, 
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reporting E~ ..... H, from (21) into (20), this system (20) 
becomes 

E~o cos 01 - E,o cos 01 = E,o cos 02 (22.a) 

Eio+ Ero E'°. (22.b) 
Z1 Zl Z2 

Defining the reflection factor as the ratio of the electric com- 
ponents lying in the interface, that is, - E,o cos 01/E~o cos 0 l, 
and then solving the set (22) for this ratio, the reflection 
f a c t o r  r e for the TE case is 

Z 2 c o s  0 2 - Z I c o s  01 

rp - Z2 cos 02 + Z1 cos 01" (23) 

This factor (23) is as at an interface lying between two usual 
media. The formula for the transmission factor would be the 
same as usual, too. With (14), we can rewrite (23) as 

G1 cos 02 - -  G2 COS 01 

rp = G1 COS 02 + G2 cos 0~' 
(24) 

where G1 and G2 are functions of 01 and 02 through (19.b). 
We will now address a particular case announced at the 

beginning of this section. Let us consider an interface lying 
between media having same ay and a.~* conductivities, that 
is, a (axl,  O'.~1, O" v, O'y ~) and a (O'x2, * ax2, ay, a.*)media. Then 
the Snell-Descartes law (19.a) becomes 

sin 01 sin 02 
(25) 

GI G2 

If, moreover, the two media are matched ones, that is, 
(O'X 1 , * * * axl), (ax2, a~2), and (ay, ay ) satisfying (2), we have 
G1 = G2 = 1, so (25) reduces to 

0 1 ----0 2 (26) 

and the reflection factor (24) is then 

Then, squaring (25), replacing GI and G 2 by (19.b), and 
taking into account that Wy~ = Wy2, we can deduce that 

x / -~2 sin 01 cos 02 = x/-~xl sin 02 cos 01 (29) 

and with (28) and (29), 

(30) 

Formula (30) shows that even if the media are not 
matched ones, the reflection does not depend on the 
incidence angle 0~. It depends only on the frequency 
through (10). In the case of matched media Wxl = Wx2 = 1 
and (30) reduces to (27) as expected. 

Interface Normal to y 

Let us consider a plane wave propagating upward and 
striking an interface normal to the y axis. Defining the 
incidence angle 0 as in the previous case with respect to the 
interface, since ~0 is defined with respect to the y axis (Fig. 1 ) 
we have now ~o=0+~/2 .  Similar treatment as in the 
previous case yields then the Snell-Descartes law related to 
an interface normal to y, 

where 

( a x l ] S i n 0 ,  ( ax2)Sin02 
1 - -  i e o C O / ~  = 1 - i e o ~ O /  G2 (31.a) 

Gk = x/Wxk sin 2 Ok + Wy~ cos 2 Ok (for k = 1, 2). (31.b) 

In the case of two media having the same ax and a*, 
(31.a) becomes (25). If, moreover, these media are matched 
ones, then G1 = G2 and (31.a) reduces to (26). Since the 
reflection factor is still (23), (27) is still true. So, at an inter- 
face normal to y lying between two matched media having 
the same (ax, a*),  the reflection factor is always null. 

rp=O. 

So, at an interface normal to x lying between two matched 
a.v ), a plane wave is PML media having the same (ay, * 

transmitted without reflection at any incidence angle and at 
any frequency. That is also true, of course, if the first 
medium is a vacuum and the second one is a (ax, a*, O, O) 
medium, since a vacuum can be seen as a ( 0 , 0 , 0 , 0 )  
medium. 

In the general case of unmatched media having the same 
(or.v, a v ), a simple formula can be obtained for the factor 
(24). Bringing (25) into (24) yields 

s i n  01 c o s  0 2 - s i n  0 2 c o s  01 

rp = s i n  01 c o s  0 2 -4- s i n  02 c o s  01" 

(27) Practical Conclusions of This Section 

As a summary of this section we can now say that 
the reflection factor between two PML media whose 
conductivities satisfy (2) is null: 

- -  at an interface normal to x in the case of the same ay 
and a~*. 

- -  at an interface normal to y in the case of the same ax 
and a*. 

This result is, of course, true if some conductivities equal 
zero. Having in mind that a vacuum is a (0, 0, 0, 0) PML 
medium, each of the previous cases yields two particular 

(28) occurrences which will be the basis of the P ML technique. 
These occurrences are 

581/114/2-3 
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- -  the reflection factor is null at an interface normal to x 
lying between a vacuum and a (a~, a*, 0, 0) matched 
medium or between a (0, 0, %,  tr*) and a (ax, a*, %,  a*)  
matched media. 

- -  the reflection factor is null at an interface normal to y 
lying between a vacuum and a (0, 0, O-y, a*)  matched 
medium or between a (tr x, ~*, 0, 0) and a (try, tr*, try, a*) 
matched media. 

2.4. Perfectly Matched Layer for the 
Finite Difference Technique 

The general frame of the PML technique is pointed out 
on Fig. 3. The Maxwell equations are solved by the F D TD  
(finite-difference time-domain) technique I- 1, 11 ] inside a 
computational domain in which lies a source of outgoing 
waves. For instance, such a source will be the scatterer in a 
wave-structure interaction problem. The computational 
domain is surrounded by an absorbing layer which is an 
aggregate of PML media whose properties have been 
predicted in previous sections. The domain is finally ended 
by perfectly conducting conditions. 

On both the left and right sides of the computational 
domain, the absorbing layers are matched PML 
(~r~, (r*, 0, 0) media. So, at interfaces vacuum-layer AB and 
CD normal to the x axis, the reflection factor is theoretically 
null, as it has been proved (Eq. (27)). Outgoing waves can 
propagate without reflection through the AB and CD inter- 
faces. Similarly, matched PML (0, O, ay, a* ) media are used 
on both upper and lower sides of the computational domain 
so that the outgoing waves can propagate without reflection 

through the BC and DA interfaces normal to y. At the 
four corners of the domain, the absorbing layers are made 
of P ML (ax, e*, ay, ~*) media having conductivities equal 
to those of the adjacent (ex, a*, 0, 0) and (0, 0, %,  ~*) 
media. As a result, there is theoretically no reflection at the 
interfaces lying between the side layers and the corner 
layers. For instance, a wave can propagate without reflec- 
tion through the BB1 and BB 2 interfaces of Fig. 3. 

As physical remark, we can note that with the PML layer, 
the speed of propagation is the speed of light in the whole 
computational domain, and the Snell-Descartes law is (26) 
at all interfaces. So, as a wave travels from a medium to 
another one through interfaces, its shape is preserved. 
That is in close relationship with the lack of reflection at 
interfaces. 

In the absorbing layer, the magnitude of a wave is ruled 
by the last two exponential factors of (15). In the side layers 
which are (~x, * 0) (0, 0, ~ ,  e~, 0, or • a.*) media, one factor 
equals unity. So, at a distance p of any interface, the 
magnitude of an outgoing plane wave can be written as 

¢(p)  = ~(0) e -( . . . .  0/~0~, (32) 

where 0 is the incidence angle defined with respect to the 
interface, and cr is either ax or %. After crossing the layer, 
a wave is reflected by the perfectly conducting conditions 
which ends the domain, and then, after a second crossing, it 
can come back into the vacuum. So, for a layer of thickness 
6, an apparent reflection factor can be defined as 

R(O) = e :( . . . .  0/~0c)a (33) 

* , % 2 ,  o~2) PML (Oxl, Oxl 
PML (0, O, ~,2, o~2) 

B2 

i::iii i_  /'vac ..... "'-. !iiiil -. ~_~_ --::: 
::.:.:: / . . ~ "  ~ . ~  .~ .:t.::.:: 
:-X"÷ ., j ' "  ""-. ",, ~.:.:-:'7÷: 
'X".'÷X / ~-" ~', \ ~ ' ~  ::::::.'. 
'.:::'::. " / ~ ....... , "~ "~ ":÷X'÷: 
:.:.:.:"+ / / . , . - "  -., ~. ~. :'.: ..... 

':'.":':'7"~ i i /" '~. ~. 

:..'..'÷:÷:. i / ," .. • ......... . ~. ~ i ! i ! ] ' ~  .:.:.:÷:.:.: • , .," . . ,  . , . .  " \  . 

-!'.'!:!:i:i:i:" / / :" ".. ~ i ~.:'.:.:'÷:1".:'.:" 
~':':'~ i i : Wave source" ! i |.:.:.:.~.:.:.:I 

PML(Oxi' Ox*a' O' 0)" ~::::::i i ' : : ' i t  i:':"'" ~ 
::.:'.v:, "~ '~ ". .. ! i X".".":'."- 
:.'.:..v..~ . • .~ -. • i ' I ........ 
....... ~ ~ • .. • I ' :v::.v.. . . . . . . . . .  .~ o.. ... i . ! :.::.'.v:. 
,:'.:v:..~ .~ ~ . "" """"" / / i v.':: X'.":"- '~ "~ ~, / , • -. 
::::.:" ., ",, ' ,  ~ . f  ," / "."X'.X 

ii!ili::ilili -.. "-.- Yt ~> 
X 

....... ..:.:: :::.: 

.!iii{ii!iii} D vacu= ..-" a .......... 
• q .... 

............ " ' : " " " ' ' " : " ' ' ' ' ' ' ' ' : "  ................ ......... "''1 ,~ ?...?.X.X~X.:~.:.~7(....?:÷:.:.:.?:.:÷?.~...~:.:.?÷?:÷X.:.:~.:.:.......:.:(+:.:~.X+:~+:.:(~(.:.! :÷?X'X'X':'.'£'.'-:. 

Bi 

--Outgoing Waves 

PML (ox2, a~2, O, O) 
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FIG. 3. The PML technioue. 
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This formula claims a remark. If the incident wave is close 
to the interface ( 0 ~ n / 2 )  the factor R is close to unity, 
whatever a may be. This is not troublesome in practical 
computations as we will see from numerical tests. It is not 
surprising, indeed, since for instance, a close to the interface 
wave on the right side of the domain will come per- 
pendicularly to the upper (or lower) side, where it will be 
absorbed. 

As (33) points out, the apparent reflection is a function of 
the product a6. So, for a given layer attenuation, theoreti- 
cally the layer thickness 6 could be as thin as intended, 
reduced to one cell of the F D T D  mesh, for instance. In 
fact, sharp variations of conductivity create numerical 
reflections, as with the [4-6]  technique. So, in practical 
computations the layer has to be a few cells thick with 
conductivity increasing from zero at the vacuum-layer 
interface to a value (9" m at the outer side of the layer. For  a 
conductivity a(p) the reflection factor is then 

R(O) = e - 2(~os O/~o,.)~ ~(p)dp (34) 

All numerical computations reported in this paper have 
been performed with conductivities of the form 

for which, enforcing (35) in (34), the apparent reflection is 

R(O) = e (2/(. + l))(Omb/~:0c ) cos 0 

to be discretized are (3). In the inner volume (vacuum and 
scattering structure, for instance) the set (3) could be used 
too, since the usual media can be seen as particular PML 
media. But having in mind computer storage optimization, 
it is more convenient to use the Maxwell equations which 
address only three field components, instead of four, 
with (3). 

In the inner volume (for I < IL and J < JL on Fig. 4) the 
finite-difference equations are the usual [ 1, 11 ] discretiza- 
tions of the Maxwell equations. In the P ML medium, the 
two magnetic subcomponents are computed at the same 
points, in place of the magnetic component H z. Discretiza- 
tion of the set (3) is straightforward. With the usual F D T D  
notations, (3.b) and (3.c) yield the following equations that 
can be applied in the whole layer, except in the interface for 
Ey (see below), 

E~+l(i,j+ 1/2) 

(1 -- e ~(i),J,/~) 
= e -"xli)~'/*° Ey(i, j+ 1/2) 

ax(i) 3x 

x [H~"~ + 1/2(i + 1/2, j + 1/2) + Hz~ + 1/2(i + 1/2, j + 1/2) 

_ Hznx + 1/2(i__ 1/2, j +  1/2) - HTf '/2(i- 1/2, j +  1/2)] 

(35) H7+~/2(i+ 1/2, j +  1/2) 

= e -  ~x*(i+ 1/2)zJt/#o H~£ 1/2(/..1._ 1/2, j + 1/2) 

( 1 - e  a*(i+l/2)3t/uo) 

a*(i+ 1/2) 3x 
(36) 

× [Ey(i + 1, j +  1 / 2 ) -  Ey(i, j +  1/2)], 

Numerical implementation of the PML layer in the 
F D T D  technique does not involve special treatment. Let us 
consider, for instance, the upper-right part of a gridded 
computational domain (Fig. 4). In the layer, the equations 
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(37) 

(38) 

where ax and a* are functions of x(I), in the left, right, and 
corner layers, and are equal to zero, in the upper and lower 
layers (for I < IL on Fig. 4). For the Ey component lying in 
the interface, the magnetic field has one component Hz on 
one side and two subcomponents H=, Hzy on the other. 
That is a result of using the Maxwell equations in the inner 
volume, but it has no physical significance (Hzx and Hzy are 
present in the inner volume where they merge, since a* 
equals a*). The finite difference equations have to be 
modified. So, in the right side interface normal to x, (37) 
becomes 

Ey + l(it, j +  1/2) 

(1 -- e -  ~,(u) a,/~0) 
= e ,,x(il)~J,/~OEny(il, j + 1/2) - 

a,:(il) Ax 

× [H"~ '/2(il+ 1/2, j +  1/2) + H"~7 ~/2(i1+ 1/2, j +  1/2) 

- -  H7 + m ( i l -  1/2, j +  1/2)]. (39) 

In all computations of this paper, conductivities which 
depend on index I (or J, too) were implemented as the 
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average value in the cell around the index location. That can 
be written for ax(I), 

1 f.~u) + dx/2 
~rx(i)=Tx-xui  A.~/2 ~rx(x')dx" (40) 

where ax(X) was of the form (35) in our computations. 
The discretized equations needed for the advance of the 

components Ex and H:y are obtained from the remaining 
equations (3.a) and (3.d). That yields three equations 
analogous to (37), (38), (39). 

2.5. P ML Medium for the Transverse Magnetic Case 

In TM problems, the electromagnetic field reduces to 
three components, E~, Hx, Hy. In a PML medium, the 
component which is split into two subcomponents is the 
electric field Ez. The PML medium equations for the TM 
case are the following: 

OE~ x t?Hy 
e° - -~  --+ axEzx = ~x (41.a) 

c3E~y c~Hx (41.b) eo - - ~  + ayE~v = gy 

OH~ 8(E:x + Ezy) (41.c) l,o - g -  + ~*Hx = ay 

Oily O(E,x + E~y) (41.d) 
~o ~ + ~*xH, - ax 

Same calculations as in the TE case yield slightly changed 
results. In most formulas, especially in (8), (10), (19.a), 
(19.b), the change is only a permutation ofe o with #o and of 
starred tr with unstarred ones. In (14), 1/G is changed to G 
and (23) has to be replaced by the usual r s factor. But the 
most important result is left unchanged. As in the TE case, 
there is no reflection both at an interface normal to x 
between two matched media having the same (ay, a*) and 
at an interface normal to y between two matched media 
having the same (ax, a*). So, an absorbing reflectionless 
layer can be built as in the TE case. 

3. NUMERICAL EXPERIMENTS 

In order to evaluate the actual possibilities of the 
PML technique in practical computations, six numerical 
experiments are presented here. The first two are elementary 
tests which compare the theoretical reflection factor with its 
practical counterpart when a plane wave strikes either an 
infinite vacuum-layer interface or the corner of a computa- 
tional domain. The third experiment is related to the 
absorption of a pulse on the boundaries of a computational 
domain. The last three are closer to some realistic applica- 

tions. We will consider successively a wave-structure inter- 
action problem in the TE case, a wave-structure interaction 
problem in the TM case, and finally the problem of a slot 
radiating in free space. 

3.1. Techniques Used for Numerical Comparisons 

In most numerical experiments, the results were com- 
puted with both the PML technique and three other techni- 
ques of free-space simulation in order to evaluate the 
improvement we can expect from using the PML technique. 
The first technique used in these comparisons was the 
matched layer [-4~6] which we will refer to as ML on the 
figures. The second technique was the one-way wave equa- 
tion in its Pad~ approximation version. Discretization was 
the same as in [-8, 10] for the first two orders of approxima- 
tion. Some results were also computed with the third order 
using a discretization of our own. We will refer to this 
technique as one-way on the figures. The third technique, 
referred to as operator, is that of Higdon operators defined 
directly in finite-difference terms. We used the following 
operator, which is a particular case of the general operator 
adressed in [9],  

B(K,Z-1)=[I_KZ 1+ Ax-cAt(K-ZJx+cAt 1)] p' (42) 

where / ,  K, Z 1 are the identity and shift operators of [9]  
and p is the order of the operator (2 or 3 in our computa- 
tions). 

For  the one-way and operator techniques, the reflection 
factor of a plane wave is, at an incidence angle 0, 

 43, R(O) = + cos 

For  the ML technique, with conductivities to be used in 
order to absorb the outgoing waves over a few cells of the 
F D T D  mesh [-5], the practical reflection factor is also (43) 
with p = 1. 

3.2. Reflection of a Plane Wave Striking a Plane Boundary 

As the first finite difference experiment, we have com- 
puted the reflection factor of a plane wave striking a plane 
boundary, in the TE case. Figure 5 shows the computational 
domain used. The boundary to be tested is applied on one 
side of the domain in which a plane wave is produced by the 
Huyghens surface technique [6].  Both the incident wave 
and the reflected one are present inside the Huyghens 
surface, but only the reflected wave is outside it. So, the 
reflected wave is obtained at a point P close to this surface 
but outside it. As it appears on Fig. 5, the computation is 
correct only during a clear time which depends on the 
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Reflected wave 

H3 

a2 

~> PML layer----I ~ Huyghens Surface 

x 

Wave at t=0 

b 

F I G .  5. F D T D  d o m a i n  for  c o m p u t i n g  the  reflection of  a p l ane  wave.  

dimensions of the domain. Three undesired fields disturb 
the desired result at P, first, the non-physical artefacts 
coming from B1 ands B2, where the Huyghens surface is 
broken, and, second, the wave reflected on the boundary to 
be tested, and on the upper side of the domain. Setting the 
beginning of computation when the wave is just striking the 
corner of the Huyghens surface (Fig. 5), the reflected wave 
will arrive at a time to, whereas the undesired fields will 
arrive at times tl, t2, t3. With the distances defined on 
Fig. 5, some calculations yield the following times: 

Cto = h cos 0 + al sin 0 + dcos  0 (44.a) 

ctl = C t o + x / a Z + d 2 - a l  sin 0 -  dcos  0 (44.b) 

c t 2 = C t o + x / a Z + d Z + a z s i n O - d c o s O  (44.c) 

ct3 = Cto + 2(b - d) cos 0 (44.d) 

In practical computations, tl, t 2 ,  t3, are set in order to have 
a desired clear time, and then (44.b), (44.c), (44.d) yield the 
dimensions al, a2, b of the domain. 

Computat ions have been performed with a 5 * 5-cm cell 
and a 0.1-ns time step. The incident wave was a Gaussian 
pulse of 1 ns time constant, and the reflection factor was 
computed by means of a Fourier transformation of the 
reflected pulse observed during the clear time at P. The 
Huyghens surface and P were set respectively 3 and 5 cells 
from the boundary. Calculations have been performed from 
normal to 75 ° incidences, within domains varying from 
300 • 80 to 2000 * 130 cells so that the clear times were in 
the interval 100-200 time steps (10-20 ns). The resolution of 
the Fourier transformation was then better than 100 Mhz. 
We used as reflection factors the values obtained from the 
low frequency limit of the Fourier transformation of the 
reflected pulse. So, these factors were actually reflection 
factors around the 100-MHz resolution, at frequencies only 
slightly disturbed by the F D T D  mesh, whose cutoff is about  
100 times higher. 

TABLE I 

Reflection Factor (%) for a Plane Wave Striking 
a Plane Boundary 

B o u n d a r y  0 = 0 0 = 45 ° 0 = 75 ° 

cond i t i ons  F D T D  • t h e o r y  F D T D  * t h e o r y  F D T D  • t h e o r y  

O n e - w a y  2 0.010 • 0.000 2.945 • 2.944 34.67 • 34.67 

O p e r a t o r  2 0.003 * 0.000 2.945 * 2.944 34.67 • 34.67 

O n e - w a y  3 0.001 • 0.000 0.505 * 0.505 20.41 * 20.41 

P M L ( 4 ,  C,  1.0) 3.053 * 1.000 4.953 * 3.853 30.53 * 30.36 

P M L ( 4 ,  L,  1.0) 1.080 • 1.000 3.991 * 3.853 30.42 * 30.36 

P M L ( 4 ,  L,  0.1) 0.059 * 0.100 0.820 • 0.756 16.84 * 16.73 

P M L ( 4 ,  L,  0.01) 0.133 * 0.010 0.126 * 0.148 9.358 * 9.220 

P M L ( 4 ,  P ,  0.01) 0.041 • 0.010 0.234 * 0.148 9.437 * 9 .220 

P M L ( 4 ,  P ,  0.001) 0.012 • 0.001 0.073 * 0.029 5.317 * 5.080 

P M L ( 8 ,  P ,  0.001) 0.0015 * 0.001 0.038 * 0.029 5.158 * 5.080 

P M L ( 8 ,  P ,  0.0001) 0.0010 • 0.0001 0.0085 * 0.0057 2.873 * 2 .800 

M i s s m a t c h e d  P M L  17.16 • 17.16 17.16 • 17.16 17.15 • 17.16 

M L ( 4 ,  L, 0.1) 0.059 • 0.100 17.10 • 17.16 58.90 • 58.88 

Table I presents some results for three incidence angles 
and various boundary conditions. In each case two values of 
the reflection factor expressed as percentages are reported. 
The first value was computed by the F D T D  technique and 
the second one, by the theoretical formula which is either 
(36) for the P M L  layer or (43) for the other techniques. The 
first three lines of the table are related to the one-way and 
operator techniques, with both second and third orders. 
One can see that the F D T D  results are in very sharp agree- 
ment with the theoretical formula (43) at oblique inciden- 
ces, and that the reflection is very short at normal incidence. 
The next eight lines are related to eight different P M L  
layers. In Table I and always in this paper, a PML layer is 
defined by three parameters. The first one is the number of 
cells. The second one is a letter which means the variation 
of the conductivity, a C for constant conductivity, a L for 
linear conductivity, or a P for parabolic conductivity (in 
(35), n = 0 ,  1, 2, respectively). The last parameter  is the 
theoretical reflection at normal incidence R(0), expressed as 
a percentage. This factor R(0) is related to the conductivity 
O" m defined in (35) since (36) can be rewritten as 

R(O) = [R(0)]  c°s° (45) 

with 

R(0) = e ( 2 / ( . +  l))(~m6/eOC). (46) 

Table I gives results for P M L  layers both four and eight 
cells thick. The first P M L  result is for a constant conduc- 
tivity with R(0) equal to 1%. In this case the reflection 
factor computed by F D T D  is about in accordance with its 
theoretical value (45) at oblique incidences, but it is three 
times its theoretical value at normal incidence. So, a con- 
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stant conductivity produces a strong numerical reflection at 
the vacuum-layer  interface. This reflection is widely reduced 
when using a linear conductivity, as the next three cases of 
Table I show. Then, the F D T D  factors are in good agree- 
ment with their theoretical values when R(0) equals both 1 
and 0.1%. Numerical reflection appears only when R(0) 
equals 0.01%, for which the normal reflection is greater 
than that observed when R(0) equals 0.1%. As the last two 
four-cells P M L  layers of Table I show, a larger reduction of 
numerical reflection can be obtained from using a parabolic 
conductivity. Then the F D T D  factor is reduced to about 
0.01% at normal incidence when R(0) equals 0.001%. 
Finally, the last two PML layers of Table I show that 
another way to reduce the amount of numerical reflection is 
to increase the thickness of the layer. With an eight-cell 
parabolic layer, the reflection at normal incidence is reduced 
to 0.001% when using R(0) equal to 0.0001%. Such a R(0) 
value allows very short reflection at high incidence angles, 
less than 3 % at 75 °. 

For normal and 45 ° incidences, three conductivity varia- 
tions, and four-cell layers, Fig. 6 presents the F D T D  reflec- 
tion factor as a function of the theoretical factor R(0). This 
figure confirms the results of Table I, with a constant con- 
ductivity the F D T D  reflection cannot be shorter than 3 %, 
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FIG. 6. FDTD reflection factor as a function of the theoretical 
reflection factor R(0) for two incidence angles. 

while with respectively linear and parabolic conductivities it 
can be of the order of 0.1 and 0.01%. Moreover, we can see 
that in all cases, under an opt imum value of R(0), that 
reflection rises in the vicinity of the normal incidence. With 
a parabolic conductivity, for instance, this optimum is in the 
range 0.001 to 0.0001%. 

For  a parabolic conductivity, Fig. 7 gives the reflection 
factor as a function of the incidence angle. As suggested by 
Fig. 6, the F D T D  factor is close to its theoretical counter- 
part at high incidence angles. Numerical reflection appears 
above all in the vicinity of the normal incidence, where the 
theoretical reflection is short. What  appears clearly on 
Fig. 7 is that the practical reflection can be far shorter than 
that of the second-order one-way technique, in most of the 
incidence angle range. At incidence 45 ° the P M L  reflection 
is then about 100 times shorter when using an R(0) factor 
around 0.0001%. 

The next to last line of Table I gives the reflection factor 
computed with a PML medium which does not satisfy the 
matching condition (2). Computat ions have been per- 
formed with a highly absorbing layer in order to have an 
apparent  reflection (45) that is negligible at the incidences 
of interest and, then, to observe only the reflection at 
the vacuum-layer  interface. The results of Table I were 
obtained using a PML(15, L, 1.E-10) medium whose 
conductivity o" m was set to its normal value 0.098 mho 
yielded by (46), but whose magnetic conductivity tr* was set 
to two times the value deduced from (2). At frequencies 

1 and, then, around 100MHz, with (10) we had w~=~ 
the theoretical reflection factor (30) at the vacuum layer 
interface was equal to 17.16%. The results of the F D T D  
computat ion reported in Table I are in sharp agreement 
with that prediction and, especially, the reflection does not 
depend on the incidence angle. 

The last line of Table I gives the reflection factor 
computed with the ML technique [4-6] ,  a linear conduc- 
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FIG. 7. FDTD reflection factors as functions of the incidence angle, 
for four-cell parabolic layers. These factors are compared with their 
theoretical counterparts given by formula (45) and with the FDTD 
reflection factor of the second-order one-way technique. 
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tivity, and  a 0 .1% appa ren t  reflection at  no rma l  incidence. 
As expected,  at  obl ique incidences the reflection factor  is in 
accordance  with the first o rde r  of  formula  (43). 

In  conclusion,  what  appea r s  a long these first numer ica l  
exper iments  is tha t  the theore t ica l  proper t ies  of the P M L  
layer are  preserved in the F D T D  computa t ions .  A small  
a m o u n t  of numer ica l  reflection appears  at the v a c u u m - l a y e r  
interface, but  with a magn i tude  tha t  can be cont ro l led  while 
tuning some paramete r s  of  the P M L  layer, main ly  its 
conduct iv i ty  profile and  n u m b e r  of cells. So, in prac t ica l  
computa t ions ,  very shor t  F D T D  reflection factors can be 
ob ta ined  using the P M L  technique.  F o r  instance, with a 
P M L  layer  having four cells only,  the ac tual  reflection 
factor  can be widely shor ter  t han  that  of the second o rde r  
one-way technique. 

3.3. Reflection of a Plane Wave Striking a 
Computational Domain Corner 

In o rde r  to check that  at  the corners  of  a c o m p u t a t i o n a l  
d o m a i n  the abso rp t ion  of waves is in accordance  with the 
theory  of the P M L  technique,  we have per formed numer i -  
cals tests with the doma in  of  Fig. 8. Ei ther  the abso rb ing  
layer  or  ano the r  b o u n d a r y  cond i t ion  is set on two sides of  
the d o m a i n  in which a p lane  wave is p roduced  by  a 
Huyghens  surface. At a po in t  P outs ide this surface, the field 
is the s u m m a t i o n  of three waves. The first one is reflected on 
the b o u n d a r y  no rma l  to y, the second one on the b o u n d a r y  
no rma l  to x, and  the third one on the two boundar ies .  Since 
in P M L  media  the shape of waves coming from vacuum is 
preserved,  the reflected componen t s  of the field are set as if 
they were reflected by the conduc t ing  planes ending  the 
domain .  So, for P close to the corner ,  so that  the phase-shif t  
be tween the three reflected waves can be neglected, one can 

deduce the ra t ios  of  the reflected c ompone n t s  at  P over  the 
incident  ones, 

E x / E x i  = R(r t /2  - O) - R(O) 

E y / E y i  = R(O)  - R ( n / 2  - O) 

H z / H ~ ,  = R (  O) + R ( n / 2  - O) 

- R(O) R ( n / 2  - O) (47.a) 

- R(O) R ( n / 2  - O) (47.b) 

+ R(O) R ( r ~ / 2 -  0), (47.c) 

where R(O) is the magn i tude  of the reflection factor (45), 
and 0 is the incidence defined on Fig. 8. The  formulas  (47) 
are also valid for bo th  one-way and  o p e r a t o r  condi t ions ,  
with the reflection factor  (43) in place of  (45). 

As in the case of  reflection on a p lane  b o u n d a r y ,  the com-  
pu ta t ion  is exact  dur ing  a clear t ime only.  Two  non-phys ica l  
fields will d i s tu rb  the result  at P, coming  from B1 and B2, 
where the Huygens  surface is broken.  Set t ing the beginning 
of c o m p u t a t i o n  when the incident  wave is jus t  s tr iking the 
Huyghens  surface (Fig. 8) and,  since P is close to the corner  
(5 cells), the t imes to, t l ,  t2 at which the reflected wave and  
the undesired fields will arr ive at P can be a p p r o x i m a t e d  as 

Cto = a sin 0 (48.a) 

c t l  = Cto + a(1 - sin 0) (48.b) 

cl 2 = Cl o + b(1 - cos 0). (48.c) 

C o m p u t a t i o n s  have  been per formed with 5 * 5-cm cells and  
a 0.1-ns t ime step. The results r epor ted  in Table  II for 45 ° 
and  75 ° incidence angles were ob ta ined  within 3 0 0 .  300 
and 2 0 0 0 .  120 c ompu ta t i ona l  domains ,  a l lowing clear  
times greater  than  10 ns. 

TABLE II 

Reflected Field (%) near a Computational Corner 

F Wave at t=O 

Reflected waves / ~A 

~Undesired waves A 

x Huyghens Surface layer 

FIG. 8. Computational domain for a plane wave striking a corner. 

Boundary E~/ E~, E / E yi H z/ H zi 
conditions FDTD * theory FDTD • theory FDTD • theory 

Incidence angle 0 = 45 ° 

One-way 1 2.942 * 2.944 2.942 * 2.944 37.26 • 37.26 
One-way 2 16.13 • 0.087 16.13 • 0.087 18.48 • 5.974 
Operator 2 0.087 * 0.087 0.087 * 0.087 5.977 * 5.974 
PML(4, L, 1.0) 0.158 * 0.148 0.158 • 0.148 8.141 * 7.854 
PML(4, L, 0.01) 1.7E-3 * 2.2E-4 1.7E-3 • 2.2E-4 0.251 * 0.297 
PML(4, P, 0.001 ) 1.5E-3 * 8.5E-6 1.5E-3 * 8.9E-6 0.146 • 0.058 

Incidence angle 0 = 75 ° 

One-way 1 58.16 * 58.17 56.13 • 56.13 61.64 • 61.63 
One-way 2 49.97 * 34.65 30.67 * 34.63 39.04 * 34.71 
Operator 2 34.64 * 34.65 34.63 * 34.63 34.71 • 34.71 
PML(4, L, 1.0) 29.54 * 29.55 28.78 • 28.84 32.06 * 31.89 
PML(4, L, 0.01) 9.458 * 9.207 9.484 * 9.205 9.231 * 9.235 
PML(4, P, 0.001 ) 5.297 * 5.079 5.300 • 5.079 5.333 * 5.082 
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For different techniques of free-space simulation, Table II 
compares the field components at P computed by both the 
F D T D  method and the analytical formulas (47). With 
the first-order one-way technique, the results are in good 
accordance. Inversely, with the second-order one-way, 
F D T D  results and theoretical values are strongly different. 
That is not surprising since the second-order discretization 
cannot be applied at points closest to the corner, where we 
applied the first-order one. With the operator  technique, the 
second-order discretization can be applied everywhere and 
the F D T D  fields are as expected at both incidences. With the 
PML technique whose three cases are shown in Table II, 
the F D T D  results can be seen as also in good agreement 
with the analytical formulas. Moreover, the corner does not 
add any numerical reflection; the computed results are con- 
sistant with those obtained when computing the reflection 
factor of a wave striking a plane boundary. Indeed, using in 
(47) the F D T D  factors as those of either Table I or Fig. 6 
in place of (45) yields values close to those computed with 
the corner domain. For instance, in the case of the 
PML(4, L, 1) layer and the 45 ° incidence, this procedure 
yields 0.159, 0.159, and 8.141 for the three field components. 
Such values are very close to the results reported in 
Table II. 

As a conclusion for these experiments, with the P M L  
technique the absorption of outgoing waves at the corners 
is as good as on the plane boundaries. The corners do not 
raise any problem nor do they need any special treatment. 

3.4. Absorpt ion  o f  a Pulse  on the Boundar ies  o f  a 
C o m p u t a t i o n a l  D o m a i n  

In order to evaluate the performances of the PML techni- 
que when a pulse strikes the boundaries of a computational 
domain, we have performed the test used in [10] to com- 
pare different one-way wave approximations. We have 
considered the same 100 • 50 cells domain, with the same 
space and time increments, respectively, 1.5 cm and 25 ps. 
The domain was surrounded either by some cells of PML 
medium or by other boundary conditions. Inversely [10], 
our computations have been done in the TE case, so the 
pulse was produced at a magnetic point. With time 
expressed in nanoseconds, this pulse, set at the point 
(50, 25) of the mesh, was 

H:(50, 25) = 3~0 (10 - 15 cos 2st  + 6 cos 4zrt - cos 6~zt) 

(49.a) 

H:(50, 25)=  0 if t > 1 ns (49.b) 

As in [10] a reference solution was computed using a 
large domain. We used a 4 0 0 , 4 0 0  domain, allowing a 
boundary-free solution during 500 time steps. Denoting 
H:(i, j)  the field in the test domain and Hzr(i, j), its counter- 

part  in the reference domain, two kinds of results are 
presented below. First the reflected field along a boundary 
( j  = 1 ), at time step 100, normalized to the peak value of the 
field at point (50, 1 ), 

R ( i ) =  [H:(i, 1)-H:r(i, 1)]/H:,(50, 1) . . . .  (50) 

and, second, the L 2 n o r m  of the error on the 1 0 0 , 5 0  
domain, as a function of time, 

100 50 

L :ZZ 
i : l  j = l  

[H:( i , j ) -H:r( i , j )]  2. (51) 

Figure 9 shows some results computed when using the 
one-way and operator techniques, both with second and 
third orders, and the P M L  technique in the case of a four- 
cell linear layer having a 1% normal reflection R(0). With 
this P M L  layer, the reflected field is about the same as that 
produced by the third-order techniques. Figure 10 shows 
the variations of the computed results when reducing the 
parameter  R(0), still with a four-cell linear layer. The reflec- 
tion decreases in the first step, and then increases in the 
second step when R(0) go below 0.01%. Such an evolution 
is in accordance with that of the reflection factor of a plane 
wave, as seen on Fig. 6. With the optimum value of R(0), 
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FIG. 9. Absorption of a pulse by one-way, operator, and 
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the reflected field is about 10 times shorter than that of the 
third-order techniques. 

Figure 11 is a comparison of the optimum results 
obtained with different PML layers, using the procedure of 
Fig. 10. Layers of four, six, and eight cells are addressed 
with both linear and parabolic conductivities. As expected, 
using a parabolic conductivity in place of a linear one 
reduces the reflection of the pulse. And a greater reduction 
is obtained when increasing the number of cells. Comparison 
of Figs. 9 and 11 shows that the PML(8,  P, 0.001) layer 
allows the reflection along the boundary to be about 400 
times shorter than that produced by the third-order techni- 
ques. Such a factor can be seen also on the average of the 
magnitude of the reflected field over the entire domain, since 
the L 2 norm, which is proportional to the energy, is reduced 
by a factor of the order of 100,000. 

In conclusion for these tests, we have observed that the 
PML technique can drastically reduce the amount of reflec- 
tion when outgoing waves are striking the boundaries of  a 
computational  domain. 

3.5. Wave-Structure Interaction in the TE Case 

Wave-structure interaction problems are the most  usual 
application of the F D T D  technique. These open problems 

can be satisfactorily solved using the ML or one-way 
techniques, on condition that the boundaries are set far 
enough from the scattering structure. In many applications, 
the structure-boundary distance must be larger than the 
half-length of the structure. As a result, the greatest part of 
the computational  domain is the vacuum surrounding the 
scatterer. We will see below that, with the PML technique, 
the vacuum can be suppressed, and then the computational  
domain can be widely reduced. 
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We have considered the problem of a TE wave scattering 
on a conducting plate having zero thickness, an infinite 
width, and a 100 F D T D  cells length (5 m). This problem is 
a two-dimensional one, the principle of computation is 
presented on Fig. 12. Either the PML layer or another 
boundary condition is set Nc cells from the plate and the 
incident wave is produced by a Huyghens surface one cell 
from the plate. The results are shown here for a wave of the 
form: 

E(t)=Ein¢[e t/l°°-e-'] (time t in ns). (52) 

In order to test the results, a reference solution was com- 
puted in a large domain with 700 • 600 cells surrounded by 
a 10-cell PML layer. With such a domain, the scatterer- 
boundary distance was then about three times larger than 
the scatterer length. The results presented below are, first 
the normal electric field Ey at the end of the plate (A on 
Fig. 12), and second the magnetic field H: ,  equal to the 
surface current density, at the middle of the plate (B on 
Fig. 12). 

Figure 13 shows some results computed with various 
boundary conditions set a half-length from the scatterer. 

With the four-cell PML used, the results are close to the 
reference solution. Inversely, with the other techniques 
they are not satisfactory, a larger domain is needed, the 
scatterer-boundary distance must be as large as the 
scatterer length for solving this problem. We note that the 
best of the other three techniques is the operator (42) 
at early times, but after 2500 time steps (250 ns) there is a 
mild instability with this technique. 

Figure 14 shows the results computed with PML layers 
set only two cells from the scatterer and with layer thick- 
nesses varying from 4 to 15 cells. With the four-cell PML 
layer, the current density could be viewed as close to the 
reference, but the electric field cannot. Reducing the normal 
reflection factor R(0) does not yield better results. Inversely, 
increasing the number of P ML cells yields results that are 
closer to the reference solution. With 10 cells, the electric 
field is good, with 15 cells it is perfect. Considering this last 
case, the solution is computed within a 134 • 34 = 4556-cell 
domain, involving about 18,000 field components, while 
computations with the other techniques of free-space 
simulation need domains with at least 300 * 200 cells, 
involving 180,000 field components. For this problem, 
using the PML technique can then reduce the computer 

-i- 

6 ,  

5 .  

4. 

3. 

2. 

I. 

O. 

... I BOUNDARIES 50 CELLS FROM A I00 CELLS SCATTERER I 

"-"~. "', [ ........ ML(4,P,I) 
~ ' S  ' ,  ] . . . . .  ONE-WAY 2 
\'\ ', I .... _OPE:*TOR 2 

I %  -~ . ",, ~...~_~L,(4.P.I ) 

i . . . .  i . . . .  J . . , , i  . . . .  i . . . .  , " ' ' -  . . . . .  

0 50 too 150 200 250 300 350 4oo 450 5o0 
(NS) 

m a g n e t i c  fields c o m p u t e d  wi th  b o u n d a r i e s  pos i t i oned  a ha l f - length  f r o m  
the scat terer .  

[ BOUNDAR]ES 2 CELLS FROM A 100 CELLS SCATTERER I 

( REFERENCE ] 

...... , """  - . . .  - - - - ' -  f .  . ' : - - =  :'- . , 7  

50 I00 150 200 250 300 350 400 450 500 
TIME (NS) 

l.S 

16 [ BOUNOAR,ESS0CELLS FROM A ,00CEL  SCA RER I ,S  I I 
1.6 BOUNDARIES 2 CELLS FROM A lO0 CELLS SCATTERER 

1,4 

1.2 MLI4,P,I) 1.2 
ONE-WAY 2 .~ 

1.o OPERATOR 2 
PML(4,P,I) ..,. 1.0 

°, o s 

0,6 0.6 

0.4 0.4 

0.2 0.2 

0 50 I00 150 ZOO 250 300 350 400 4~0 500 50 I00 150 200 .'50 300 350 4OO 450 500 
TX~IE ~s)  TIME (Ns) 

F I G .  13. W a v e - s t r u c t u r e  in t e rac t ion  in the  T E  case. Electr ic  a n d  F I G .  14. W a v e  s t ruc tu re  i n t e r a c t i o n  in the T E  case. Elect r ic  a n d  

m a g n e t i c  fields c o m p u t e d  wi th  the  P M L  layer  pos i t ioned  two  cells f r o m  the 
sca t terer .  



ABSORPTION OF ELECTROMAGNETIC WAVES 199 

requirements by a factor of 10 for both memory and 
computational  time. 

So, the PML technique allows us to solve wave-structure 
interaction problems without vacuum around the scatterer. 
The layer must have a thickness of a few cells, but 
nevertheless the computer requirements can be widely 
reduced as seen with a two-dimensional problem. Since 
computers can now accomodate three-dimensional 
scatterers of 100 cells or more, drastic reductions of such 
requirements could be hoped for, by extending the P M L  
technique to three-dimensional problems. 

3.6. Wave-Structure Interaction in the T M C a s e  

We have computed the current induced by a plane wave 
on a cylinder of a square cross section. This problem was 
previously solved by the F D T D  method in [12] and used in 
[ 10 ] to compare the second and third orders of the one-way 
technique. Computat ions have been performed with the 
same conditions as in [10], with a cylinder of side equal 
to 20 cells, a 1.592-cm cell, a 100-MHz incident wave 
propagating normally to one side, and a six-sinusoidal 
cycles duration. The principle of computation is still that of 
Fig. 12, except that the square cylinder replaces the thin 
plate and that Eq. (41) are used in place of (3) in the P M L  
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layer. In order to evaluate the accuracy of the results, a 
reference solution was computed using a 1000.  1000 
domain which allowed a boundary-free solution during six 
sinusoidal cycles. 

For  a domain surrounded by a PML(4, P, 0.01) layer, 
Fig. 15 presents the magnetic field, equal to the current 
density, on both the broadside and the shadow side. In each 
case, the results have been computed with various cylinder- 
boundary distances, from 2 to 20 cells. We can see that these 
results are almost perfect for any distance. For  5 to 20 cells, 
the curves are not distinct from the reference ones, only a 
slight difference can be observed when the distance equals 2 
cells. So, as in the TE case, the P M L  technique allows us to 
suppress the surrounding vacuum which is needed when 
using the ML, one-way, or operator techniques. Then, the 
computer requirements can be widely reduced too. 

3.7. Free-Space Radiation of  a Slot 

We have computed the field radiated by an infinite 
slot located in a perfectly conducting plane when an 
electromagnetic wave propagates on one side of that plane. 
This problem is a two-dimensional one; the principle of 
computation is shown on Fig. 16. The finite-difference 
domain is split into two parts by the conducting plane in 
which a 10-cell wide slot (50 cm) is located. The incident 
wave above the plane is produced by a Huyghens surface, 
and the goal of the computation is to obtain the free-space 
radiated field below the plane. 

The computat ion has been performed within a 8 0 , 4 2 -  
cell domain. The incident plane wave was a Gaussian pulse 
and the results have been translated to the frequency 
domain by Fourier transformation. In order to evaluate 
their accuracy, a reference solution was computed using a 
1000 ,1000  domain allowing a boundary-flee solution 
during about 1500 time steps (150 ns), a duration which was 
also that of the main domain computations. 
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Fig. 15. Wave-structure interaction in the TM case. Magnetic field on 
a cylinder of square cross section for various cylinder-layer distances. 
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FIG. 17. Radiation of a slot. Components of the field on the line 
located 30 cells from the slot, computed with ML, one-way 2, operator 2, 
and PML techniques. 

Some results are presented on Fig. 17, along a line 
located 30 cells below the slot, and then only two cells from 
the lower boundary conditions. Field components, 
computed when using either a four-cell PML layer or other 
boundary conditions, are compared with the reference solu- 
tion at 10 and 300 MHz. As it appears, the results computed 
with the PML layer are in good accordance with the 
reference ones, along the whole line of Fig. 16. That is also 

true everywhere in the domain. Inversely, with the other 
techniques, reflections on boundaries produce errors whose 
magnitude depends on location, frequency, and component. 

4. C O N C L U S I O N  

In this paper, an absorbing layer which does not activate 
any reflection at an interface with first vacuum has been 
described, and then applied to build a new technique of free- 
space simulation. This PML technique theoretically allows 
the electromagnetic waves to be absorbed with a reflection 
as short as needed. Finite-difference experiments have 
shown that a small amount of numerical reflection occurs in 
practical computations, but with a magnitude that can be 
reduced by tuning some parameters of the layer, especially 
its thickness. So, one can obtain actual reflection factors 
that are widely shorter than those of the techniques pre- 
viously used for free-space simulation. As a result, using the 
PML technique allows us to obtain a better accuracy in 
some problems and a release of computational requirements 
in some others. 

After having completed the work related above, two ways 
of further research were initiated: first, the generalization of 
the PML technique to three-dimensional problems; second, 
a more detailed analysis of the wave structure interaction 
problem in order to understand how some numerical reflec- 
tion occurs in the TE case, having in mind a reduction of the 
layer thickness to be used. The first step has not raised any 
objection; the second one is still under investigation. These 
topics will be addressed in further papers. 
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